黃金分割定理及證明?
- 時間:
- 瀏覽:522
- 來源:可可黃金網
把一條線段分割為兩部分,使其中一部分與全長之比等于另一部分與這部分之比。其比值是[5^(1/2)-1]/2,取其前三位數字的近似值是0.618。由于按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建筑等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做“菲波那契數列”,這些數被稱為“斐波那契數列”。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什么關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨于黃金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出后面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
不僅這個由1,1,2,3,5....開始的“菲波那契數”是這樣,隨便選兩個整數,然后按照菲波那契數的規律排下去,兩數間比也是會逐漸逼近黃金比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我國的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什么?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿后出現的所有三角形,都是黃金分割三角形。
黃金分割三角形還有一個特殊性,所有的三角形都可以用四個與其本身全等的三角形來生成與其本身相似的三角形,但黃金分割三角形是唯一一種可以用5個而不是4個與其本身全等的三角形來生成與其本身相似的三角形的三角形。
由于五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等于0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對于全部之比,等于另一部分對于該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...后二數之比2/3,3/5,5/8,8/13,13/21,...近似值的。